TABLE I. Summary of error analysis of x-ray divergent beam method using an as-grown, zone-refined tungsten single crystal.

(iii) No. of cryations	(321) 24	(222) 15 °	(310)		{220} 11	{211} 7
a	0.84601	0.91381	1.00085		1.11912	1.29230
ő.	0.00008	0.00026	0.00029		0.00036	0.00039
17. %	0.009	0.028	0.029		0.032	0.030
σ.i*	0.00016	0.00028	0.00061		0.00076	0.00083
/o.i *2	4.0829×10^{7}	1.2958×10^{7}	0.2675×10^7		0.1740×10^{7}	0.1254×10
d.	3.16547	3.16561	3.16496		3.16534	3.16549
ō	65.57	57.45	50.32		43.49	36.59

It should be understood that the σ_d values from which t_d was obtained are a measure of the precision of the admique, that is, they express the experimental error t_d cach measurement of t_d spacing. The $\tilde{\sigma}_d$ should be compared to the σ_d^* values listed in row 6 of Table I which are the standard deviations of t_d spacings of the t_d forms. t_d measures, therefore, more than the experimental error and its physical significance seems to be intimately related to the residual strain distribution in the as-grown crystal. It will be noted from Fig. 6 that both $\tilde{\sigma}_d$ and t_d decrease with increasing Bragg angle t_d and that for all t_d forms, excepting t_d are nearly twice as large as the corresponding t_d values.

The precision determination of the lattice parameter was carried out by adopting a sequence of steps which all be outlined presently.

(1) It may be seen from Table I that a considerable number of determinations of d spacings has been carried for each $\{hkl\}$ form investigated. From each ralue of an $\{hkl\}$ form, the lattice parameter a' was emputed using the relation $a' = d \cdot (h^2 + k^2 + l^2)^{\frac{1}{4}}$.

(2) To each a' of an $\{lkl\}$ form thus obtained a value the Nelson-Riley function, $\frac{1}{2} \left[(\cos^2 \theta / \sin \theta) + \cos^2 \theta / \theta \right]$, as assigned. The θ value used for this computation corresponded to the d spacing from which each a' was againally derived.

3) Since the error in the computation of d and therefore the error in a' diminishes with increasing θ (Fig. 6), statistical weight was assigned to each a' which is approximate to $1/(\sigma_a^*)^2$ (see Appendix A).

(4) Employing a method of least squares, the lattice sameter a_0 was obtained by extrapolation of the slope this least-squares line is then given by

$$b = \sum n_i w_i a_i'(x_i - \bar{x}) / \sum n_i w_i (x_i - \bar{x})^2$$

the v intercept by

$$a_0 = (\sum w_i a_i' / \sum w_i) - b \sum x_i w_i / \sum w_i,$$

The $x_i = \frac{1}{2} \left[(\cos^2 \theta_i / \sin \theta_i) + \cos^2 \theta_i / \theta_i \right]$ (the value of the son-Riley function), $w_i = \left[1/(\sigma_{d_i}^*)^2 \right] / \left[\sum_i 1/(\sigma_{d_i}^*)^2 \right]$ is statistical weights), $\bar{x} = \sum_i n_i w_i x_i / \sum_i n_i w_i$.

The following results were obtained:

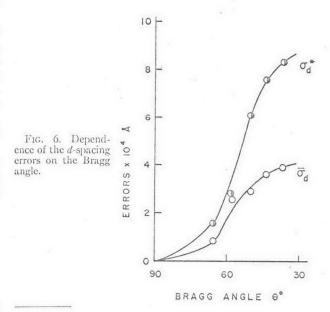
$$b = -3.88 \times 10^{-4} \pm 0.56 \times 10^{-4}$$

 $a_0 = 3.16554 \pm 0.00002$ Å.

The lattice parameter a_0 was corrected for refraction by adding to it a term $a_0(1-n)$, where n is the coefficient of refraction. For tungsten and using CuK_{α_1} radiation ($\lambda = 1.54051$ Å) the correction factor for refraction was 157×10^{-6} Å. Since the ambient temperature during the experiments was $28^{\circ}C$, a temperature correction was also applied using the expression

$$a_2 = a_1 + \alpha a_1 (T_2 - T_1),$$

where a_1 and a_2 are the lattice parameters at temperatures T_1 =28°C and T_2 =25°C, respectively, and α , the coefficient of expansion of tungsten, is 4.6×10^{-6} °C⁻¹. With these corrections applied the lattice parameter a_0 is 3.16566 Å at 25°C.



⁹ International Tables for X-Ray Crystallography (Kynoch Press, England), Vol. 3.

Fe sing's analysis of

bern I with

ssary, ations of the res and

ven in

values

aund in

ir each

d was

re slope

andard

casure-

in turn

of this

1 by da

ails con-

rors are